A Two-Stage Weighting Framework for Multi-Source Domain Adaptation

نویسندگان

  • Qian Sun
  • Rita Chattopadhyay
  • Sethuraman Panchanathan
  • Jieping Ye
چکیده

Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution but may have plenty of labeled data from multiple related sources with different distributions. The difference in distributions may be both in marginal and conditional probabilities. Most of the existing domain adaptation work focuses on the marginal probability distribution difference between the domains, assuming that the conditional probabilities are similar. However in many real world applications, conditional probability distribution differences are as commonplace as marginal probability differences. In this paper we propose a two-stage domain adaptation methodology which combines weighted data from multiple sources based on marginal probability differences (first stage) as well as conditional probability differences (second stage), with the target domain data. The weights for minimizing the marginal probability differences are estimated independently, while the weights for minimizing conditional probability differences are computed simultaneously by exploiting the potential interaction among multiple sources. We also provide a theoretical analysis on the generalization performance of the proposed multi-source domain adaptation formulation using the weighted Rademacher complexity measure. Empirical comparisons with existing state-of-the-art domain adaptation methods using three real-world datasets demonstrate the effectiveness of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-Source Domain Adaptation and Its Application to Early Detection of Fatigue

We consider the characterization of muscle fatigue through noninvasive sensing mechanism such as surface electromyography (SEMG). While changes in the properties of SEMG signals with respect to muscle fatigue have been reported in the literature, the large variation in these signals across different individuals makes the task of modeling and classification of SEMG signals challenging. Indeed, t...

متن کامل

Instance Weighting for Domain Adaptation in NLP

Domain adaptation is an important problem in natural language processing (NLP) due to the lack of labeled data in novel domains. In this paper, we study the domain adaptation problem from the instance weighting perspective. We formally analyze and characterize the domain adaptation problem from a distributional view, and show that there are two distinct needs for adaptation, corresponding to th...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Online Methods for Multi-Domain Learning and Adaptation

NLP tasks are often domain specific, yet systems can learn behaviors across multiple domains. We develop a new multi-domain online learning framework based on parameter combination from multiple classifiers. Our algorithms draw from multi-task learning and domain adaptation to adapt multiple source domain classifiers to a new target domain, learn across multiple similar domains, and learn acros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011